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Abstract

Fractions are a critical building block for the development of
human mathematical cognition, but the origins of this concept
are not well-understood. Recent work has found that a whole
number sense is present in deep convolutional neural networks
(DCNNs) pre-trained for object recognition and uses them as
a model for investigating human numerical cognition. Do DC-
NNs also have a fraction sense? If so, is it dependent or in-
dependent of whole number processing? We investigated the
neural sensitivity of a pretrained DCNN to both whole num-
bers and fractions. We replicated and extended previous re-
search that the sense of whole number emerges in a different
DCNN architecture. Further, we showed that DCNN is also
sensitive to fraction value, i.e., the ratio of numerosities. Test-
ing this model, our results suggest that the fraction sense relies
on the whole number sense.
Keywords: deep convolutional neural network; emergent
sense of number; ratio-processing system; approximate num-
ber system

Introduction
Understanding the origins of human mathematical abilities is
critical for both theoretical and applied reasons. How people
develop increasingly sophisticated mathematical capabilities
is not well understood. One crucial building block to achiev-
ing a fully developed mathematical cognition is using and un-
derstanding the concept of a fraction appropriately (Siegler et
al., 2012; Matthews, Lewis, & Hubbard, 2016). There are
two main theories for how fraction understanding develops.
Some have argued that fraction understanding is bootstrapped
from the whole number system using logical rules (i.e., divide
two whole numbers; Dehaene, 2011; Feigenson, Dehaene, &
Spelke, 2004). Others have proposed that fraction cognition
emerges in a bottom-up manner based on the primitive non-
symbolic ratio-processing system (RPS; Lewis, Matthews,
Hubbard, & Matthews, 2015). The RPS is analogous to the
approximate number system, but instead of estimating a sin-
gle numerosity, it estimates relative numerosities. Its exis-
tence has been supported by studies with infants (McCrink &
Wynn, 2007) and non-human primates (Vallentin & Nieder,
2008). In this paper, we build on this work by conducting
a computational investigation of whether state-of-the-art ob-
ject recognition models have a fraction sense, and if they do,
whether it is built on a whole number sense.

Over the last decade, machine learning models of ob-
ject recognition have advanced to human-like performance.
The standard model for state-of-the-art object recognition is
a deep convolutional neural network (DCNN; Krizhevsky,
Sutskever, & Hinton, 2012). Their performance is so strik-
ing that some researchers use them as a tool for investigat-
ing human object recognition (Cadieu et al., 2014). Recently,
mathematical cognition researchers have found that a ”whole
number sense” emerges within these DCNNs, despite being
trained purely for object recognition (DeWind, 2019; Nasr,
Viswanathan, & Nieder, 2019). In fact, a whole number sense
has been found even in an untrained DCNN with random
weights (Kim, Jang, Baek, Song, & Paik, 2019). In this pa-
per, we build on this work by analyzing whether these models
have a fraction sense. To the best of our knowledge, our work
is the first work to do so.

To investigate whether a whole number sense can emerge
from an object recognition system, previous work examined
how sensitive a DCNN is to whole numbers, presented as
dot arrays (DeWind, 2019; Kim et al., 2019; Nasr et al.,
2019). They found that a whole number sense can emerge
within a DCNN, in a manner that is invariant to various con-
founds (e.g., area, density). Further, the activation patterns
of the whole-number-selective neurons in a DCNN (the ar-
tificial neurons) are similar to the neural activity of humans
and primates when they use their whole number sense. These
studies indicate that number sense is an emergent property of
DCNNs. This could due to statistical regularities in visual
input, visual recognition training and/or the architecture of a
DCNN. Here, we asked whether a DCNN also has a fraction
sense.

In this paper, we use DCNNs to investigate the relation
between whole number and fraction processing. First, we
show that the whole number sense is robust to the particular
DCNN used (previous work only used one DCNN – AlexNet;
Krizhevsky et al., 2012). Next, we examine whether DC-
NNs also have a fraction sense. Then, we explore whether
fractions are processed in a manner that is independent from
whole number processing. We concluded with a discussion
of the limitations and implications of our work.



Methods
Deep Convolutional Neural Network
To test the robustness of number sense results to DCNNs
other than AlexNet, we used the VGG16 model (Simonyan
& Zisserman, 2014) with weights trained to classify the 1000
object classes in ImageNet (Russakovsky et al., 2015). Note
that the model has never been explicitly trained to learn the
concept of numerosity. Any sensitivity to numerosity is an
emergent property of learning to recognize objects, visual
statistics and/or the model architecture itself.

Stimuli
We used dot arrays as stimuli (See Fig. 1), in which the num-
ber of dots defined a stimulus’ numerosity. For fractions, we
used two presentation formats to ensure the robustness of the
results: side-by-side and intermixed (See Figs. 1bc). For side-
by-side fractions, the stimulus was composed of a dot array
in the top-left (the numerator) and in the bottom-right (the de-
nominator) of the image. This format representation avoided
confounds between the fraction’s value and the ratio of size
and spacing, but leaves correlations with the ratio of convex
hull (see below for definitions of size, spacing, convex hull,
field areas etc.). To address the potential confound of convex
hulls, we also used the intermixed fraction format. For inter-
mixed fractions, there was a single dot array and the numer-
ator and denominator were represented by different colors.
This design ensured that numerator and denominator arrays
share the same convex hull and thus avoids this confound.
However, this format has a different limitation: the fractions
value correlates with the ratio of sparsity. The intermixed
fraction format mirrors the one used in infant and non-human
primate work (McCrink & Wynn, 2007; Vallentin & Nieder,
2008). Using two fraction stimulus formats help ensure that
our results are robust to these confounds.

Whole Number Stimulus Set The whole number stimuli
were generated with the scripts used by DeWind (2019). The
stimuli were evenly sampled from a three-dimensional stimu-
lus space (Fig. 1d) that includes three axes: numerosity, size,
and spacing. For each stimulus, numerosity was the number
of dots, size was the area of each dot multiplied by total area
of all dots, and spacing was the field area (area surrounded
by the convex hull) multiplied by the sparsity. Following
best practices from previous work (DeWind, Adams, Platt, &
Brannon, 2015), we used these three axes to minimize con-
founds with simple image features.

For this study, numerosity had 5 levels, ranging from 1 to 5
(Fig. 1a). Size and spacing also had 5 levels with equal inter-
vals between levels. All combinations between numerosity,
size, and spacing were used to generate stimuli (with random
dot positions). This resulted in 125 unique whole-number
stimuli.

Side-by-side Fraction Stimulus Set The side-by-side frac-
tion stimuli were generated by inserting a dot array in the
top-left corner (the numerator) and a dot array in the bottom-

Figure 1: Stimuli. (a) Whole number stimuli (modified from
DeWind, 2019 with consent). (b) Side-by-side (top-left nu-
merator, bottom-right denominator) and (c) intermixed frac-
tion stimuli (gray numerator, white denominator). (d) Dot-
array stimulus space. 3 principle axes are numerosity, size,
and spacing. Dotted lines represent other stimulus features.
See text for details regarding the properties of this stimulus
space (modified from DeWind et al., 2015 with consent).



right corner (the denominator) of the same image (Fig. 1b).
The fraction value had 5 levels, ranging from one-fifth to
one in equal intervals. For each fraction value, there were
25 factors to encode the number of dots per numerator or
denominator value. For example, 25 images were included
where 5,10,15, . . . ,125 dots were used for the numerator and
denominator for the fraction value of 5/5. With 5 fraction
values and 25 factor levels, there were 125 fraction stimuli.
Critically, the fraction value was not perfectly correlated with
either the numerator or denominator. Therefore, the DCNN
could not determine the fraction value solely from one of the
dot arrays and must use both the numerator and denomina-
tor to solve it correctly. To avoid the DCNN from deciding
the fraction value simply by the ratio of size or spacing be-
tween the numerator dot array and denominator dot array, we
fixed the size ratio and spacing ratio to constant across all 125
stimuli.

Intermixed Fraction Stimulus Set As shown in Fig. 1c,
intermixed fraction stimuli were composed of dots of two
colors, gray (numerator) and white (denominator). As with
the side-by-side format, we fixed the size ratio to be con-
stant. However, unlike that format, we also fixed the field
area ratio to be constant. We did this because the two dot
arrays were intermixed and have roughly the same convex
hull. This means that the ratio of spacing between the numer-
ator and denominator corresponded perfectly to the fraction
value, i.e., ratio of spacing = ratio of (field area × sparsity) =
ratio of (field area2/numerosity) = ratio of (field area2)/ratio
of numerosity) = 1/fraction value. We used the same fraction
values and number of dots per numerator and denominator as
we did with the side-by-side format.

Activations of Artificial Neurons
To measure the sensitivity of artificial neurons to numerosity
and other features, we first computed the intermediate acti-
vation of the artificial neurons given a stimulus as input. We
only focused on the output activation of the 13 convolutional
layers of VGG16 in our analysis. We excluded the output
activation of the fully connected layers as they were built for
classifying the 1000 objects in the ImageNet challenge, rather
than as part of the visual processing itself. This resulted in
13,547,520 hidden neurons of interest. For each stimulus set,
we constructed an activation matrix A that was of size, num-
ber of stimuli × number of neurons. The row as was the
intermediate activation of all neurons of interest for the sth

stimulus.

Neural Sensitivity Measurement
For each neuron, the neural sensitivity to numerosity and
other features were measured as the model R2 of a multiple
regression with dummy-coded regressors. The sensitivity for
artificial neuron j is

â j,s =
5

∑
l=1

(
bl, j × I(ns = l)

)
. (1)

The dependent variable is the predicted activation of neuron
j for stimuli s. l indexes the possible numerosity values (in
discrete levels), ns is the numerosity of stimulus s, and I(·) is
the indicator function (value is one when its input is true, and
zero otherwise). bl, j is the regression parameter for numeros-
ity level l for neuron j, which was estimated by minimizing
sum of squared error. The model R2 of the model above in-
dicates the neural sensitivity of neuron j to numerosity. The
rationale of using this measure is that if a neuron encodes

Figure 2: The histograms of neural sensitivity in the first and last convolutional layer for the (a) whole number stimulus set, (b)
side-by-side fraction stimulus set, and (c) intermixed fraction stimulus set. The sensitivity is measured by the model R2 of the
regression model for each feature. Spacing was omitted for the intermixed format (see text for details).



numerosity more, its corresponding predictor weight should
increase as well, resulting in higher model R2. This measure
was used by DeWind (2019) to investigate the whole number
sense in DCNNs. Artificial neuron sensitivity for other fea-
tures (e.g., size, spacing) was calculated in the same manner.

Artificial Neuron Number Sense Selectivity

Selective neurons were defined as those sensitive to a spe-
cific property, while being insensitive to other confounding
properties. We examined three types of selectivity. Following
DeWind (2019), we defined an artificial neuron as selective to
whole-number if its sensitivity to numerosity was above 0.1
and its sensitivities to both size and spacing were lower than
0.001. For the side-by-side format, fraction-selective neurons
were defined as having a sensitivity to fraction value above
0.1 and sensitivity to the ratio of size and the ratio of spacing
below 0.001. For the intermixed format, the threshold for the
ratio of spacing was not applied due to the issues discussed
above. There were insignificant variation in some features
due to image pixelation and rounding.

We defined an artificial neuron as fraction-dissociable if its
sensitivity to the fraction value was above 0.1 and its sensitiv-
ity to the numerosity of the numerator and denominator were
both below 0.001. Fraction-dissociable neurons are those that
encode the fraction values while not encoding the numerator
or denominator themselves.

Monte Carlo Permutation Test on Selective Neurons

We performed a Monte Carlo permutation test (Dwass, 1957)
on the selective neurons in order to ensure they did not
emerge just by chance. For each type of selective neurons,
we constructed a permutation distribution by sampling 3,000
random permutations of which numerosity labels correspond
to which stimuli, and then recalculated the regression analy-
ses with the permuted data. For instance, for whole-number
selective neurons, at each random permutation, we shuffled
the labels of numerosity randomly, estimated the neural sen-
sitivity to numerosity, and computed the proportion of whole-
number selective neurons. After 3,000 random permutations,
we then derived the p-value by counting how many permu-
tations have proportion of whole-number selective neurons
greater than or equal to the observed proportion. In addi-
tion, we calculated the 99% confidence interval (CI) of the p-
value based on the Binomial distribution. We performed the
permutation test on fraction-selective neurons with the same
process, except that we shuffled the labels of fraction value
rather than numerosity.

Results
The DCNN Whole Number Sense

Focusing on the whole number stimuli, we found neurons that
are sensitive to numerosity, size, and spacing (Fig. 2a). For all
three features, the neural sensitivity increases from the first to
the last convolutional layer.

Figure 3: The proportion of whole-number selective neu-
rons (black line) and the proportion of such neurons based on
Monte Carlo permutations (light blue lines) across 13 convo-
lutional layers. For each layer, the blue triangle labels the me-
dian of the permutations, along with the error bars labelling
the 1% and 99% quantiles.

Do numerosity-sensitive neurons really detect numerosity
or some confound, such as size or spacing that might be corre-
lated with numerosity? As shown in Fig. 3, there are whole-
number selective neurons, and there is a greater proportion
of number-selective neurons in deeper than shallower layers.
For the first convolutional layer, the proportion of whole-
number selective neurons is 0.056%, which is not reliably
different from random the permutations, p = .334, 99% CI
of p = [.314, .354]. In contrast, in the last convolutional layer,
the proportion increases to 1.53%, which is reliably different
from random permutations, p = .0003, 99% CI of p = [.000,
.001].

The DCNN Fraction Sense

Fraction selective neurons increases in proportion with depth
(Figs 4ab). Note that there are fewer fraction selective neu-
rons than whole-number selective neurons, e.g., at the last
convolutional layer, 1.54% of whole-number selective neu-
rons vs. 0.082% (side-by-side) or 0.11% (intermixed) frac-
tion selective neurons. However, the permutation test sug-
gests that only the proportion of side-by-side fraction selec-
tive neurons is reliably different from random permutations,
but this is not true for the proportion of intermixed fraction se-
lective neurons. For instance, at the last convolutional layer,
the proportion of side-by-side fraction selective neurons is re-
liably different from random permutations, p = .002, 99% CI
of p = [.000, .004], but not for intermixed fraction selective
neurons, p = .123, 99% CI of p = [.102, .143]. Nonethe-
less, this supports the argument that a fraction sense (at least
for side-by-side fractions) can emerge from a DCNN merely
trained to classify objects.



Figure 4: The proportion of fraction selective neurons across
13 convolutional layers for (a) the side-by-side (b) intermixed
fraction formats. The proportion of fraction selective neu-
rons (black line) and the proportion of such neurons based on
Monte Carlo permutations (light blue lines) across 13 convo-
lutional layers. For each layer, the blue triangle labels the me-
dian of the permutations, along with the error bars labelling
the 1% and 99% quantiles.

Dissociability of the Sense of Fraction and the Sense
of Whole Number
Interestingly, we found no fraction dissociable neurons for
either fraction format. To check if this may be due to thresh-
olds being too strict, Figure 5 visualizes the relations between
sensitivity to fraction value and the numerator or denomina-
tor. For both fraction formats, there are essentially no neurons
that are sensitive to the fraction value without being sensitive
to the numerator’s value. To a lesser extent, this is also true
for the denominator. The lack of fraction dissociable neurons
supports the dependence of the fraction sense on the whole
number sense.

Discussion
In this paper, we investigated the extent to which DCNNs
trained to recognize objects contain a whole-number or frac-
tion sense. We found that the whole-number sense emerges in
VGG16, replicating and extending previous work that found
it emerges in a different DCNN architecture. This provides
robustness across particular models to the emergence of a

whole-number sense in DCNNs.

We also demonstrated that the DCNN has a fraction sense,
but this is limited to the side-by-side fraction format. One
explanation for why fraction sense does not emerge for inter-
mixed fractions is that evaluating side-by-side dots and inter-
mixed dots involve distinct perceptual processes (e.g.,Norris
& Castronovo, 2016). For humans, evaluating the fraction
value of an intermixed format stimulus requires an attentional
shift from the dark dots (numerator) to the bright dots (de-
nominator). In contrast, the side-by-side fraction format does
not necessarily requires attentional shifts because distinguish-
ing numerator from denominator can be accomplished simply
by the spatial location on the retina. Given that the VGG16
is a feedforward neural network without top-down attentional
modulation, it is unclear whether it is capable of evaluating
displays of fraction that humans need attentional shifts to ac-
complish. Alternatively, the difference in the result between
two fraction formats might be due to differences in how the
displays control for convex hull (Gebuis, Cohen Kadosh, &
Gevers, 2016). Another difference between the side-by-side
fraction format and the intermixed fraction format is that the
latter one fixes the ratio of convex hulls to one. To fully un-
derstand under what condition a fraction sense can emerge
from a DCNN, it will be important to test it with additional
fraction formats. For example, a fraction value could be rep-
resented with two juxtaposed bars with different lengths or
pairs of circles (Jacob, Vallentin, & Nieder, 2012; Matthews
et al., 2016).

Furthermore, we did not find artificial neurons sensitive
to fraction values that were not sensitive to the numerator
or the denominator. This provides support for fractions be-
ing bootstrapped from the whole-number system, rather than
from the RPS. However, the threshold analyses we conducted
have limitations.There are alternative explanations. First, the
absence of fraction dissociable neurons might have to do with
prior statistical structure. In the real world (e.g, images, text-
book), larger fractions tend to have larger numerators. This
is also true for our fraction stimuli set where the numerator
value is partially correlated with the fraction value. Second,
the fact that we fixed the ratio of other visual aspects (e.g.,
the ratio of size, the ratio of spacing) to one might force
the fraction sense to rely on the ratio of numerosity. Third,
our analyses focused on analyzing a neural network’s inter-
nal representation, rather than its behavior. To be certain
that the network encodes numerosity, we would also need
to demonstrate that the network can also produce behaviors
consistent with a proper numerosity understanding (e.g., clas-
sify images by their fraction numerosity). To deal with some
concerns with our threshold analyses, we plan to test the in-
terdependency of processing of different features (e.g., frac-
tion and whole number) using neural network perturbation
analysis (Khakzar, Baselizadeh, Khanduja, Kim, & Navab,
2019). This would examine whether the DCNN could per-
form the fraction comparison task with the whole-number se-
lective neurons ablated.



Figure 5: The relations between fraction sensitivity, numerator sensitivity, denominator sensitivity in (a) the side-by-side frac-
tion format and (b) the intermixed fraction format for the first and the last convolutional layers.

One essential question is why DCNNs have a number sense
at all. Previous research suggested that the number sense is
being bootstrapped from the visual processing system, as the
DCNNs were pretrained to recognize visual objects (DeWind,
2019; Nasr et al., 2019). However, an alternative account is
that the structure of a convolutional neural network itself re-
sults in numerosity sensitive neurons (Kim et al., 2019). Kim
et al. (2019) showed that an untrained AlexNet with random
weights is still able to detect whole numbers. This implies
that the number sense may be due to architectural constraints,
rather than a by-product of object recognition. Nonetheless,
their results focused purely on whole number and it is un-
known whether an untrained network would have a fraction
sense.

Another limitation of our work is that a DCNN is by no
means a perfect model for visual processing. But, it is ar-
guably the best available model that we can analyze feasi-
bly (Cadieu et al., 2014). There are certainly differences in
global shape processing (Doerig, Bornet, Choung, & Herzog,
2020). However, it is unclear to what extent a whole-number
or fraction sense depends on this type of processing. Ideally,
our findings should be corroborated with fine-grained neural
measurements, such as eCOG.

Another interesting issue is how different mechanisms for
numerosity estimation relate to how a DCNN detects nu-
merosity. Previous studies have shown that when the density
of dots is very high, or the total number of dots is very low,
perceptual mechanisms such as texture sensitivity or subitiz-
ing comes into play (Anobile, Cicchini, & Burr, 2013, 2015;

Anobile, Turi, Cicchini, & Burr, 2015). In the current fraction
stimulus set, the fractions with a large number of dots in both
the numerator and denominator have a large density of dots
(number of dots per square degree). For human visual per-
ception, when the density of dots in an array is greater than
5 dots per square degree, the involved mechanism switches
from number estimation to texture sensitivity. On the other
hand, for very small number of dots (less than about 4), peo-
ple tend to rely on subitizing (i.e., the ability to exactly enu-
merate without counting). DCNNs also differ from human
vision in terms of the visual resolution across the retina. It
is unclear how these different numerosity mechanisms relate
to DCNN numerosity detection and their number and fraction
sense more broadly.

There are also constraints related to using the dot array for-
mat for the fraction stimulus sets. Specifically, the design of
whole number stimulus set ensures numerosity is not con-
founded with other stimulus features (e.g., dot size, sparsity)
because stimuli were sampled equally from a deliberately de-
signed stimulus space (DeWind et al., 2015). This is not the
case for both of the fraction stimulus sets. For example, in the
intermixed representation of fraction, the denominator and
numerator share the same convex hull and thus result in a
perfect correspondence between the fraction value and some
potential confounding features (e.g., the ratio of spacing, the
ratio of sparsity). As mentioned before, one way to ensure
the robustness of our results about a fraction sense is to test
its robustness to more fraction formats. We will investigate
these issues in our future work.
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